- Details
- Category: ไอที-เทคโนฯ
- Published: Tuesday, 26 March 2024 17:08
- Hits: 11700
Use Case การใช้ AI ในภาคอสังหาริมทรัพย์และภาคอุตสาหกรรม สรุปจากงาน ‘Navigating AI Frontier’
บทความโดย OPEN-TEC
เมื่อเร็วๆ นี้ สองผู้นำด้านเทคโนโลยี ได้แก่ ทีซีซี เทคโนโลยี (TCCtech) และเดลล์ เทคโนโลยีส์ (ประเทศไทย) (Dell Technologies) ร่วมกันจัดเวทีให้ความรู้ ภายใต้หัวข้อ “Navigating AI Frontier” โดยได้รับเกียรติจากผู้ทรงคุณวุฒิจากสถาบัน IMC ผู้บริหารของ TCCtech และ เดลล์ เทคโนโลยีส์ (ประเทศไทย) เข้าร่วมแบ่งปันประสบการณ์ การนำ AI ไปใช้งานในหลายอุตสาหกรรม อัพเดทผลิตภัณฑ์และบริการด้านเทคโนโลยีรวมถึงแนะนำโซลูชันที่ตอบโจทย์เพื่อช่วยเพิ่มขีดความสามารถและประสิทธิภาพของการบริหารจัดการธุรกิจ
OPEN-TEC ศูนย์รวมองค์ความรู้ด้านเทคโนโลยี (Tech Knowledge Sharing Platform) ภายใต้การดูแลของ TCC TECHNOLOGY GROUP ขอนำเสนอประสบการณ์และผลลัพธ์จริงจากทีมงาน TCCtech ซึ่งนำความเชี่ยวชาญด้านเทคโนโลยีและความสามารถของ AI มาประยุกต์ใช้กับโครงการต่างๆ ของลูกค้าให้สามารถบริหารอาคารได้มีประสิทธิภาพมากขึ้น จัดการภาคอุตสาหกรรมได้อย่างชาญฉลาดยิ่งขึ้น ด้วย AI
ตัวอย่างการใช้เทคโนโลยีเพื่อเพิ่มประสิทธิภาพการบริหารจัดการโซลูชันภายในโครงการอสังหาริมทรัพย์ เช่น การใช้ Video Analytics วิเคราะห์ภาพใบหน้า เครื่องแบบ เพื่อคัดแยกกลุ่มแรงงานที่เข้ามาทำงานในพื้นที่แต่ละจุด สามารถจำแนกเพศ สังกัด แม้กระทั่งพฤติกรรมของแรงงานที่ก่อให้เกิดความเสี่ยง เช่น การสูบบุหรี่ในพื้นที่ควบคุม ด้วยการสร้างเงื่อนไขให้ AI เรียนรู้ คาดการณ์ และวิเคราะห์จากลักษณะที่ปรากฎ ซึ่งมีความแม่นยำสูง ละเอียดถึงระดับดวงตา สามารถค้นหาบุคคลหรือยานพาหนะในพื้นที่ภายในเวลาอันรวดเร็ว นอกจากนี้ ยังมีการใช้งาน AI เพื่อบริหารจัดการสภาพการจราจร และสนับสนุนงานอาชีวะอนามัย เป็นต้น ตัวอย่างถัดมา เป็นการบริหารจัดการพลังงาน ซึ่งโครงการขนาดใหญ่จะมีการใช้พลังงานจำนวนมาก ข้อมูลการใช้พลังงานจากระบบเซนเซอร์ต่างๆ เช่น อุณหภูมิ น้ำเย็น แสงสว่าง และความเร็วลม ซึ่งมีปริมาณมหาศาลจะถูกบันทึกไว้บน Data Server เพื่อรองรับการทำงานของซอฟต์แวร์เพื่อประมวลผล ระบบปรับอากาศจะทำงานอัตโนมัติโดยเปรียบเทียบข้อมูลต่างๆ เช่น อุณหภูมิภายในและภายนอกอาคาร ปริมาณน้ำฝน ภาพจากกล้องวงจรปิด และความหนาแน่นของ Heat Map เพื่อปรับอุณหภูมิของน้ำเย็นและความเร็วลมให้เหมาะสม
สำหรับการนำ AI ไปใช้ในภาคอุตสาหกรรม ซึ่ง TCCtech ได้พัฒนาโซลูชัน AI ให้ครอบคลุมทุกแง่มุมของธุรกิจ เพื่อตอบโจทย์ความต้องการของลูกค้า โดยใช้เทคนิคต่างๆ ดังนี้
● Rule-Based: การกำหนดกฎเกณฑ์ให้ AI ทำงานตาม
● Optimization: กระบวนการค้นหาคำตอบที่เหมาะสมที่สุดภายใต้ข้อจำกัดที่มีอยู่
● Statistics: โดยการผสมผสานหลากหลายเทคนิควิธีเข้าด้วยกันมาเป็นผลวิเคราะห์และตัวตัดสินใจ
● Machine Learning: การให้แมชชีนเรียนรู้จากข้อมูล
● Deep Learning: การให้แมชชีนเรียนรู้ข้อมูลเชิงลึกด้วยการเลียนแบบการทำงานของโครงข่ายประสาทมนุษย์
ตัวอย่างการใช้งาน AI จากต้นน้ำถึงปลายน้ำ ในภาคอุตสาหกรรม
● Production Planning: การวางแผนการผลิตสินค้า โดยคำนึงถึงปัจจัยต่างๆ เช่น ความต้องการของตลาด กำลังการผลิต และวัตถุดิบ เพื่อเพิ่มความแม่นยำ และลดเวลาการทำงาน
● Inventory Planning: วางแผนการจัดการสินค้าคงคลัง โดยใช้ Route Optimization มาช่วยให้ Operation ที่เคยทำงานแยกกัน ให้สามารถมองเห็นข้อมูลทั้งระบบและลดระยะทางการจัดส่งสินค้า และเวลาในการทำงาน
● Vehicle Routing Problem: ช่วยแก้ปัญหาการวางแผนเส้นทางขนส่งสินค้า ช่วยให้ประหยัดค่าขนส่งสินค้า และเวลาวางแผนขนส่งได้
● Demand Forecasting: การพยากรณ์ความต้องการสินค้าของผู้บริโภค
● Retail Outlet: การประเมินคุณภาพร้านค้า โดยใช้ ML วิเคราะห์ข้อมูล Actual Transaction ด้วยเทคนิค Local Outlier Factor ช่วยในการตรวจสอบและระบุ Indicator ที่ส่งผลต่อคุณภาพการให้บริการของร้านค้า
● Bottle Recycle Classification: การคัดแยกขวดรีไซเคิล ไปจัดการในรูปแบบต่างๆ โดยใช้ AI วิเคราะห์ภาพจากกล้อง
ความท้าทาย และอนาคตของ AI
การนำ AI ไปใช้ในบางกรณี ยังมีข้อจำกัด เช่น เทคโนโลยี Deep Learning ที่แม้จะทำงานได้อย่างแม่นยำ แต่อาจยังไม่สามารถทำงานได้ทันเวลาในบางสถานการณ์ อย่างเช่น การวิเคราะห์ภาพขวดรีไซเคิลบนสายพานลำเลียงความเร็วสูง หรือข้อมูลที่เก็บมาบางประเภท ไม่เพียงพอหรือไม่มีคุณภาพต่อการนำไปสอน AI อย่างไรก็ตาม เป็นที่แน่นอนแล้วว่าเทคโนโลยี AI จะได้รับการพัฒนาอย่างต่อเนื่อง และมีบทบาทสำคัญในภาคธุรกิจ โดยเฉพาะ Gen AI ที่จะเข้ามาช่วยแก้ปัญหาที่ซับซ้อนและสร้างประสิทธิภาพให้กับธุรกิจมากขึ้น
ทั้งหมดนี้เป็นส่วนหนึ่งของเนื้อหาที่ OPEN-TEC ได้รวบรวมไว้จากงานสัมมนา “Navigating AI Frontier” ที่จัดขึ้นโดย ทีซีซี เทคโนโลยี และเดลล์ เทคโนโลยีส์ (ประเทศไทย)
3892